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~~~ Abstract: If A = (A l,.~~~,
X
N
) E IR

A , BIA1,...IAN are bounded

linear operators from a Banach space X to a Banach space z ,
N

the concept of a simple eigenvalue for the operator B - ~~ A.A .
:3=1 ~

is defined. It is then shown that bifurcation always occurs at

simple eigenvalues and the results are applied to a second order

ordinary differential equation with boundary conditions at three

distinct points.

1. Introduction. Suppose X,Z are Banach spaces, IR is the real

line , B: X + Z , A: X -
~~ Z are bounded linear operators , A E tR .

An element A 0 E tR is said to be a simple eigenvalue of the pair

of operators (B,A) if dim 9~(B—A 0A) = 1 = cod im ~~(B—A 0A),

Ax0 ~ ~~(B) 
• where - x0 E 9~(B-A 0A), x0 ~~ 0 and ~~~~ denote

respectively the null space and range of operators (see Crandall

and Rabinowitz [3]). If A = I, the identity operator, and

X = Z , this is the usual definition of simple eigenvalue . Although

elementary , it is a fundamental result in bifurcation theory that

is always a bifurcation point for a smooth family of functions

M: ~R x X -
~~ Z, M(A ,0) 0 , A E~~

- &— .- ~~~~~~ ~~~~~~ ~~~~~~~~~~ .s
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provided that is a simple eigenvalue of the pair of operators

(B,A) where B,A are defined by

M(x ,A 0+ii) = [B — (A 0+ii)A]x + O(Jp.~
2
~x f + fx J

2)

as h’It lx i + 0.

In the applications, there are many cases where the function M

depends on several eigenvalue parameters. These additional parameters

often have the effect of increasing the dimension of the null space

of the operator corresponding to the linear approximation and lead

to secondary bifurcations (see, for example , Bauer , Keller , Reiss [2 ] ,

Keener [5], List [6]). There are, however , other applications where

the additional parameters are needed in order to obtain a feasible

eigenvalue problem. For example , for a •second order ordinary differ—

— 
ential equation with boundary conditions specified at three distinct

points, one cannot expect to have a complete system of eigenvalues

if only one parameter is used (see, for example , Atkinson [1]). The

- - literature on such equations is extensive (see, for example , Källstrom

and Sleeman [4] for references).

It is the purpose of this paper to begin a study of bifurcation

for problems of the latter type. More specifically, suppose

B,Al,...FAN 
are bounded linear operators taking X into Z. An

N—tuple A 0 
= ~~~~~~~~~~ of real numbers is said a simple

eigenvalue of the operators- (B
~
Al,...,AN

) if L(A ) B - 7 A .A.

satisfies

Ci ) dim 91(L(A0)) 
= 1;

(ii) L(A 0) is Fredhoim of index 1 - N;

(iii ) [A
1 9l

(L(~ 0
) )  ,.. . 

~
A
N ~M(L( x 0) )  I ~ ,~~(L(A

0
) ) Z

Li ~~~~~~ ~~~~~~~~~~~~~~~~~~ - .— —~~ — --  —S——— ~~~~ — ~~~~~~ 
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where [ ] denotes the span. For the case N = 1, this

definition coincides with the previous definition.

We show below that a simple eigenvalue of (B,A1,...,A.~) is

always a bifurcation point for a smooth family of functions

M : ~N x x z , M(A ,O) = 0, A E t R N

provided

M(A ,x) = L(A 0+p)x + O ( I p i 2 Ix I+ 1x 1 2 )

as I~ l, lx i + 0, ~ 
= 

~~1’ ”’~ N~ 
E RN

If v E tR is another parameter , p E Z is given , we

describe the bifurcation diagram for the functions

M(A ,x) + vp

under some generic conditions on the function (X 0,uy 0) where

u E IR and [y0] = ~ (L(A 0)). In particular, we obtain the familiar

cusp for several parameter families.

Finally , a specific example previously discussed by Thomas

and Zachmann [8] of a second order ordinary differential equation

with boundary conditions at three distinct points is considered .

2. Bifurcation theory. Suppose

M : U ~~~X X + Z

N(A,O) = 0, A ER~ - -

?4(A,x) = L(A )x + N (A ,x)
N

L(A) = B - 
~~ A.A .
j=i. ‘ ‘

N(A,x) = O( IA—A 0 1
2

1x 1 + ~x~
2 as IA — A 0! l x i  0,

A
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where A0 E ~
N is fixed and M has continuous derivatives up

• through order two.

Theorem 2.1. If A 0 is a simple eigenvalue of

then A0 is a bifurcation point for M(A ,x). More specifically ,

there is a neighborhood V C x x of (0,0) such that the

solutions (A ,x) E V of

M(A ,x) = 0 (2.1)

are given by V

x = y0u + z *(yu ,A *(u ) )  - 

—

where A *(u) is a continuously d i f ferentiable function of u ER

with X *(0) = A 0,  [y
0] 

= ~ (L(A 0)), z
*: ~fl(L (A 0)) 

x ~N -
~ x is a

L 

continuously differentiable function satisf ying z *(y,A 0
) =

O(Jy~
2) as J y J + 0.

_ _ _  

U
-

Proof : Let X = • Z = 

~o Z 11

X0 = 9 1 (L (A0 ) )  = [y
o l ,

z1 = 
~~(L ( A 0)).

Since A0 is assumed to be a simple eigenvalue of (B,A1,...,A.~),

we may choose

[A 1y0~...~ A~Y0J .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  .
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Let U: X + X0, I — U: X + X1, E: Z -* Z1, I - E: Z + be pro—

jections defined by the above decomposition of X,Z.

We may now apply the method of Liapunov-Schmidt to

Equation (2.1). If x = y + z , y E X0, z0 E X1, then the equation

EM (y+z ,A 0+p) = 0

• has a unique solution z*(y,u) E X1 for y,ji in a neighborhood

of (0,0) E X0 x 11~N and z*(y, O ) = O(~ y~
2) as t~ I 0. This

solution has continuous derivatives. Thus, every solution of

Equation (2.1) near (0,0) must be obtained as

x = y f z *(y,Ii)

where (y,~.t) satisfy the bifurcation equations

(I_E)N (y+z*(y,p),A 0+~
j) = 0. (2.2)

If y = uy0, u E1R, then Equation (2.2) can be written in terms

of the basis vectors A~y0 with components F~~(u~ ii) as

= ~~~~~~~~~~~~~~~~~~~~~~~~~

+ (I_E)N(A
0+jJ ,uy0+z

*(uy0,p))

N
= u 7 A.A .y0 + O( Jp J 2J uj + lu! 2 ).

Since the vectors {AjY0} are linearly independent, it follows that

- ~~~~~~ - - - -U-- - ~~~~~~~ ~~~~ •~~~~~~ •~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ - •
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F~~(u 1~~) = p~ u + O ( J u I 2 I u I  + ui 2),
- (2.3)

j  = l,2,...,N.

Solving Equation (2.2) is equivalent to solving the equations

= 0, j  = l ,2 , . . . ,N. Since each F~ vanishes for u = 0,

we may define G~~(u 1P) F~~(u 1~~)/u and know that all solutions

except u = 0 -are obtained from the equations

G~~(u 1u ) = 0, j = 1,2,... ,N.

Since G
3
(0,p) = i~~~

, j  = 1,2,...,N, we may apply the implicit function
theorem to complete the proof.

Theorem 2.1 corresponds to the situation where x = 0 is a

solution of Equation (2.1) for all A E ~~~ What happen s if there

are additional parameters in the problem and zero is not a solution

of the equation for U~e parameters not zero? For example , consider

the equation

M(A ,x) + vp = 0 (2.4)

where M is the same function as before, v E G~ and p is a given

element of Z. Also, suppose A 0 
is a simple eigenvalue of

(B ,A11...,A.~) and y0 is a basis for the null space of L ( A 0 ) .

By imposing some addit ional conditions on the nonlinear terms of

M(0,uy0) one can discuss completely the solutions of Equation (2.4)

near A = 0, v = 0 , x = 0. We do not consider the most general

situation but merely show how one can obtain the analogue of the

familiar cusp.
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Using the same notation as before , we know that

is a complementary subspace of

With E the previous projection onto g
~’(L(A 0)), let

I - E Q
1
+ •

~~
. + Q ~

where is a projection onto A~~0 and 
~j~ k 

= 0, j  
~ k. Let

a1A1y0 = Q1M ( O ,uy 0 )

~1A1y0 = Q
1
p,

U 

L•~ ~se

2
a1 ~‘ 0, ~ 0, ~~~~~~~~~ Q1fl(O,uy 0) 0. (2.5)

u 0

If the bifurcation functions F~ (u~ v~u)~ j = l ,2 , .. ., N , are defined

as in the proof of Theorem 2.1, then 
U

3
2
F

ali a U 
~o 0 0) 

—

‘ ‘ (2.6)

Fl(p,v ,u) a lu
3 + p lu + v B l +O( Iu I 4+l~I l 2 l u I + I J~I l u i 2+I vl

2+ i v l j l + I vu t )

as ii ,v,u + 0.

If

F~ (0~v~O) = vf~~(v)~ j  = l,2,...,N (2.7)

and

- - - -~~~~
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F1 
= F1, 1 

=

= (—f.F
1

+f
1
F.)/u (2.8)

= F~~(u1 v~ O)~ j  2 , 3 , .. . ,N ,

then the bifurcation equations F~ (ii~v~u) = 0, j 1, 2 , . . .  ,N , are

equivalent to the equations
I
~
.

F.(p,v ,u) 0 (2.9)

The functions F~ satisf y the properties

F~~(0~ O~ 0) = 0, j  = 2 , 3 , . . . ,N

9 ( F 21.. ,F~ )
-. = 1 .

N (0 ,0 ,0 )

Therefore , the Implicit Function Theorem implies the equations

F. 0, j  = 2 ,3,... ,N,

have a unique solution ~~~p 11 v ,u), j = 2 ,3 , . .. , N , in a neighbor-

hood of zero with ~~ (0,0,0) = 0. Therefore, th e bi furcation

equations are equivalent to the single equation

= 0. (2.10)

- The latter equation in p 1,v ,u has the form 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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u3 + ~1u + + h.o.t. = 0 (2.11)

where h.o.t. denotes higher order terms which are

O(u4+ iu j + 1u 111 u 1
2
+ 1 v 1

2
+1vu 11 + Ivu I ) as p 1,v ,u~~ 0. The bifurca— H

tion curve- for Equation (2.11) in the parameter space p 1,V is

obtained from the multiple solutions of (2.11); that is, ~i 1,v are

obtained parametrically in terms of u as the solution of

Equation (2.11) and the equation

3c~1u + + h.o.t. = 0

where h.o.t. denotes O( lu I
3+~~+f~ 1u I+ fv D . This implies

= + O( 1u 1
3), V = 2a1u

3
/~1 + O (1u 1 4) as l u l -

~ 0. This

is the familiar cusp and is shown in Figure 1 for < 0, > 0.

Figure 1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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There is one solution of Equation (2.4) to the left of the cusp

and three solutions to the right.

3. An application. Suppose a < 13 < y are real numbers, p > 0

is continuously differentiable on [a,y J , c~,a,b are continuous on

[a,y], A 11A 2 are real parameters and define

• L0
y = -(py ’ ) ’  + qy, (‘ =

L(A )y = L
0
y + X

1
ay + X 2by.

Also , suppose f(x , y , y ’)  is continuous in x , continuously d i f fer-

entiable in y,y ’, f(x,O ,0) = 0, ~f(x ,0,O)/~~(y,y ’) = 0. For given

numbers ct~ ,f33~,y1 E [O,ir), consider the boundary value problem

M(A ,y) d~ f L ( A ) y  + f ( . ,y , y ’)  = 0 on (a ,y) (3.1)

y(ct)cos a1 
— y ’ ( a ) s in a1 = 0 (3.2)

• y(13)cos 
~l 

— y ’(t3)sin 
~i 

= (3.3)

y(y )cos y
~ 

— y ’(y)sin i
~ 

= 0. (3.4)

Under appropriate conditions on a,b , it has been shown by —

Sleeman [7] that there exists an eigenvalue X 0 of L(A ) with

dim ¶fl (L(A 0)) 1. For example , if a is positive on (a ,y) and

b has a positive maximum on (cz ,13) and a negative minimum on (13,y),

then there are an infinite set of such eigenvalucs and these are

characterized by the eigonvector y 0 having m zeros on (e~ , 1 3 )  and

n zeros on (13,y) , all zeros being simple. In the ~o11o~ inj, we assume,

—— - • U•~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
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that the functions a ,b satisfy conditions which eu~~re that the

eigenfunction y0 has simple zeros on [ct ,yJ .

Let X = {y EW 2’2 (ct ,y ): y satisfies the boun dary conditions

(3.2), (3.3), (3.4)} and let Z = L2 (a ,y).

Lemma 3.1. ~~(L(A 0)) 
= {f E Z: J fy 0 0, J f y0 = 0) where

[y0] = ~ (L(A 0)); that is, L(A 0) is Fredhoim of index -1.

Proof: If we write the original three point boundary value problem

on [a,y] as two separate boundary value problems ,

L(A 0)y = f on (a ,13) (3.5)

plus boundary conditions (3.2), (3.3)

L (A0)y 
= f Ofl (13,y) (3.6)

plus boundary conditions (3.3), (3.4)

for f EZ , then it is well—known that these two problems have a

solution if and only if

f E Z, J f y0 
= 0, J f y0 

= 0. (3.7)

Therefore , if f E ~~(L(A 0)), it is necessary that f satisfy

(3.7). To show that it is sufficient , suppose f satisfies (3.7)

and let y 1,y 2 be solutions of problems (3.6), (3.7) respectively

given by

A - ~~ •~~~• -——-—-~~~~ -—~ --•—U•~~~~~ - ~
_

~

__
~~ ~~~~~~~~~~~~ ~~~~-—- -• -~~ • ---  ‘• -- •~-U_ ~~~ ;_’_ ~~~~~~~~~~~~~~~~~~~~~~~ — - -~~~~~~
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~U1. y1 
= 51y0 + K1f

= t52y0 
+ K2f

‘ U

t

where K1f, K2f are any given solutions of Problems (3.6), (3.7)

respectively and are arbitrary constants.

We must show there exist 
~l’~~2 

such that the function y

on (a ,y) given by y = y1 on (a ,13), y = y
2 

on (13,y) satis—

fies the three point boundary value problem on [a,~~]. We need

only show that y,y ’ are c~ontinuous at 13.

If = 0, then y1(13) = y2 ( 1 3)  = 0. Therefore , y(x) is

continuous at x = 13. The function y ’ (x) is continuous at x = 13

if and only if Yj(13) = y~~(13); that is,

(~ 1 2 )y~~(~~ = (lc
2
f )  * (13 ) — (K 1f) ‘(f3).

Since y~~(13) ~ 0, we may solve for — 62

If ~ 0, then the conditions for y (x) ,y ’ (x) to be

continuous at x 13 are equivalent to (we have used (3.3))

(K2f) (13) 
— (K1f) (B) (3.8)

(cos 13k) (61-62)y0(13) = (cos 
~~ 

[(K2f) (13) 
- (K1f) (B)].

If = ¶12, then y ’(B) = 0. Since y0(x) has simple zeros , it

follows that y0(13) ~ 0 and we may solve for - 62 to make
- equations (3.8) satisfied . If ~ 0, ir/2 , then both equations

are equivalent in (3.8). Also, y0(13) ~ 0 and we can solve for

- 62~ 
This completes the proof of the lemma. 

-~~ - - --- 



— ‘ ~~~~~~~~~ ‘~~~~~~~~~ • ,—•- • -- -V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~--~ - .- ~~~~~~ 

- - -
~~~~

- 
: 13 -

Lemma 3.2. If

2 ~t3 2
I J a~~

’0 J b ~ 0

det i � 0 (3.9)

L’~ 
fb y ~

-
, then A

0 is a simple eigenvalue of L(A).

Proof .: From Lemma 3.1, it remains only to show that ay0,by0 are

linearly independent and do not belong to ~ (L(A 0)). However , 
U

Relation (3.9) -clearly implies all of these properties and the lemma H

is proved.

U Lemma 3.2 and Theorem 2.1 imply there is a bifurcation at

A = A
0 for the original boundary value problem (3.l)-(3.4). This -~

result is the same as the one of Thomas and Zachmann [8]. 1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —~~~~~~ -—-~~~ Vi
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